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Three-dimensional gravity from SU„2… Yang-Mills theory in two dimensions

A. J. Niemi*
Department of Theoretical Physics, Uppsala University, Box 803, SE-751 08 Uppsala, Sweden

~Received 24 November 2003; published 25 August 2004!

We argue that two-dimensional classical SU~2! Yang-Mills theory describes the embedding of Riemann
surfaces in three-dimensional curved manifolds. Specifically, the Yang-Mills field strength tensor computes the
Riemannian curvature tensor of the ambient space in a thin neighborhood of the surface. In this sense the two-
dimensional gauge theory then serves as a source of three-dimensional gravity. In particular, if the three-
dimensional manifold is flat it corresponds to the vacuum of the Yang-Mills theory. This implies that all
solutions to the original Gauss-Codazzi surface equations determine two-dimensional integrable models with a
SU~2! Lax pair. Furthermore, the three-dimensional SU~2! Chern-Simons theory describes the Hamiltonian
dynamics of two-dimensional Riemann surfaces in a four-dimensional flat space-time.

DOI: 10.1103/PhysRevD.70.045017 PACS number~s!: 11.10.Kk, 02.40.Ky, 04.60.Kz, 11.15.2q
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I. INTRODUCTION

The isometric embedding of a two-dimensional Riema
surface in a three-dimensional ambient space is a cla
problem in differential geometry@1#. The embedding in-
volves the first and second fundamental forms of the surfa
engaging its intrinsic metric and extrinsic curvature. T
gether the two fundamental forms determine the metric
the three dimensional ambient space, in a vanishingly
neighborhood around the two-dimensional surface. If
three dimensional space is flatR3 the two-dimensional met
ric and curvature are subject to the original version of
Gauss-Codazzi equations. But when these equations ar
valid the three-dimensional curvature is nontrivial, at leas
an immediate vicinity of the surface. In this sense the tw
dimensional surface is then a source of gravity in the thr
dimensional ambient space.

In the present article we shall assert that similarly the tw
dimensional SU~2! Yang-Mills field can be viewed as an or
gin of three-dimensional Riemannian curvature. Inde
there are suggestions that something like this could oc
For example, it is well known that solutions to the sin
Gordon equation

v tt2vxx1sinv50 ~1!

describe constant negative Gaussian curvature surface
R3, up to rigid Euclidean motions. But the sine-Gord
equation also emerges as the zero curvature condition fo
SU~2! Yang-Mills field strength tensor@2# ~in the sequel
i , j ,k, . . . 51,2 anda,b,g, . . . 51,2,3)

Fi j
a 5] iAj

a2] jAi
a1eabgAi

bAj
g50 ~2!

when we decompose the connectionAi
a according to@2#

A1
ata5

vx

2
t31k2sin

v

2
t12k1cos

v

2
t2
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ata5

v t

2
t31k1sin

v

2
t12k2cos

v

2
t2, ~3!

wherek1
22k2

251 andki involve the spectral parameter, re
for a SU~2! connection. Similar relations between the ze
curvature condition~2! in the two-dimensional SU~2! Yang-
Mills theory and the embedding of a Riemann surface in
R3 have been established for a number of additional in
grable models@3#.

In the present article we shall argue that for SU~2! the
condition ~2! always describes the embedding of a Riema
surface inR3. For this we shall consider a scrupulous d
composition ofAi

a which reveals that the condition~2! coin-
cides with the Gauss-Codazzi surface equations that go
the isometric embedding of a Riemann surface in flatR3, up
to rigid rotations and translations. Consequently any in
grable model with a SU~2! Lax pair always admits an inter
pretation in terms of a Riemann surface which is isome
cally embedded in the flat three-dimensional Euclide
space.

Furthermore, we shall employ our decomposition of t
two-dimensionalAi

a to establish that whenever the conditio
~2! fails, the Yang-Mills field strength tensorFi j

a leads to a
non-trivial three-dimensional Riemannian curvature tenso
a thin neighborhood of the two-dimensional hypersurfa
This implies that the two-dimensional Yang-Mills theory in
duces gravity in three dimensions. The tentative consiste
of this proposal can be verified by comparing the number
field degrees of freedom: The two-dimensional SU~2! gauge
field Ai

a has six components, which are subject to thr
Gauss law constraints. Similarly, the three-dimensional m
ric Gmn (m,n51,2,3) has six independent matrix elemen
and these are amenable to diffeomorphisms which invo
three-field degrees of freedom. Thus both two-dimensio
Ai

a and three-dimensionalGmn carry the same number o
field degrees of freedom, with an equal number of gau
degrees of freedom.

We shall now proceed to establish the relationship
tween the two-dimensional gauge theory and thr
dimensional gravity beyond such a simple counting of fie
degrees freedom. We show that the two-dimensional Ya
©2004 The American Physical Society17-1
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Mills field strength tensor actually computes the thre
dimensional Riemannian curvature tensor in the immed
vicinity of the two-dimensional hypersurface.

II. DECOMPOSITION

The decomposition of vectors and tensors in terms of th
irreducible components is a common problem in physics.
example, it is widely employed in fluid dynamics where t
velocity three vector decomposes into its gradient and v
ticity components. In classical electrodynamics the four
mensional Maxwellian field strength tensorFmn becomes
similarly dissected into its electric and magnetic comp
nents. In the context of integrable models, the Lax pair r
resentation leads to decompositions~3! of the two-
dimensional non-abelian gauge field in terms of variab
that describe the integrable model. Finally, the isometric e
bedding of a two-dimensional surface~in general
d-dimensional hypersurface! with local coordinatesyi in a
three-dimensional~in general d1n dimensional! ambient
space with local coordinatesxm and metricGmn , involves
the decomposition of the induced metric

ds25gi j dyidyj5Gmn] ix
m] j x

ndyidyj .

This embedding also entails the decomposition~Gauss equa-
tion!

] i j x
m1Ĝnr

m ] ix
n] j x

r5G i j
k ]kx

m1Qi j N
m. ~4!

Here Ĝnr
m is the metric connection in the three-dimension

ambient space,G i j
k is the~induced! metric connection on the

two-dimensional hypersurface andQi j is its extrinsic curva-
ture tensor, andNm is the three-dimensional unit normal o
the hypersurface.

Here we inspect how Eq.~4! relates to the following de-
composition of the two-dimensional SU~2! Yang-Mills gauge
field Ai

a , introduced originally in@4#

Ai
a5Cin

a1eabg] in
bng1r] in

a1seabg] in
bng ~5!

with r,s scalar fields. Notice that we separate the sec
and fourth term on the right-hand side~RHS! and the reason
for this becomes evident as we proceed.

We shall argue that in two dimensions Eq.~5! is a com-
plete decomposition of the full SU~2! Yang-Mills gauge field
into its irreducible components.

Furthermore, we shall argue that Eq.~5! admits a differ-
ential geometric interpretation in terms of the quantities
the RHS of Eq.~4!, describing the isometric embedding of
Riemann surface in a three-dimensional ambient space.
cifically, the vectorCi relates to the~induced! metric connec-
tion G i j

k on the two-dimensional hypersurface, andr and s
relate to the two eigenvalues of its~symmetric! extrinsic cur-
vature tensorQi j , and the~three component! unit vectorna

maps to the~three component! unit normalNm by

na5ea
mNm
04501
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with ea
m a ~flat! dreibein that relates the two-unit vector

these vectors both reside in a flatR3, the vectorna is in the
tangent bundle of the gauge group SU~2! while Nm is a vec-
tor field in the ambientR3, the normal map of the two-
dimensional hypersurface. These two spaces become id
fied by em

a which is obviously an element of SO~3!.
Finally, we shall argue that when we substitute the d

composition~5! in the Yang-Mills field strength tensorFi j
a it

produces the Riemann curvature tensor of the ambient sp
when evaluated in the immediate vicinity of the surface.

The decomposition~5! was introduced and inspected
@4#, in connection of four-dimensional SU~2! Yang-Mills
theory where it is known to be incomplete@5#. But we now
argue that in two dimensions the decomposition~5! is com-
plete, describing the six independent components of a
neric two-dimensional SU~2! gauge fieldAi

a .
Indeed, whenD52 the vector fieldCi has two compo-

nents. Together withr ands and the two independent com
ponents of the unit vectorna, both sides of Eq.~5! engage
six-field degrees of freedom.

In order to confirm that the six field degrees of freedo
on the RHS of Eq.~5! are actually independent, we firs
substitute the decomposition in the Yang-Mills field streng
tensor. This yields

Fi j
a 5~Gi j 2@12~r21s2!#Hi j !n

a1¹ir] jn
a

1¹iseabg] jn
bng2¹jr] in

a2¹jseabg] in
bng. ~6!

Here

Gi j 5] iCj2] jCiHi j 5eabgna] in
b] jn

g

and

~] i1 iCi !~r1 is!5¹i~r1 is![¹if.

We then substitute this decomposition ofFi j
a in the Yang-

Mills action

S5
1

4E d2x~Fi j
a !2. ~7!

When we perform a variation of this action with respect
the component fields (Ci ,f,na), the ensuing critical points
lead to a set of Euler-Lagrange equations. These equat
reproduce the full two-dimensional Yang-Mills equations

Di
abFi j

b 50 ~8!

only when the decomposition~5! is complete in directions
which are orthogonal to the gauge orbits

Ai
a→Ai

a1Di
abeb[Ai

a1~dab] i1eagbAi
g!eb. ~9!

The variation of the action~7! with respect to the compo
nents (Ci ,f,na) gives the following Euler-Lagrange equa
tions @4#
7-2
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n̂•DiFi j 50,

k j
1ê1•DiFi j 50,

¹jfê2•DiFi j 50. ~10!

Here (êu ,êw ,n̂) is a right-handed orthonormal triplet and

k i
15k i

u1 ik i
w5~ êu1 i êw!•] i n̂5ê1•] i n̂. ~11!

Note that there is some latitude in the definition ofê15êu

1 i êw , without affecting any of our subsequent conclusio
we can send

ê1→ei jê1 . ~12!

Thus we have an internal U~1! gauge structure which ha
been discussed in@5#.

SinceF12
a 52F21

a we immediately find that the only non
trivial regular solution to the equations~10! is the homoge-
neous one,

Eqs. ~10!⇒Di
abFi j

b 50

that is, the full two-dimensional Yang-Mills equation~8!.
This means that the decomposition~5! is indeed complete in
the space of gauge orbits ofAi

a .
For a total completeness of the decomposition~5! we still

need to identify in it the SU~2! gauge orbit~9!. This gauge
orbit involves three field degrees of freedom. One of thes
the U~1! gauge transformation in the direction ofna, with
ea5ena. It sends

Ci→Ci2] ie ,

f5r1 is→ei ef,

while na itself remains intact. Notice that as a conseque
(Ci ,f) has a natural interpretation as an~electric! Abelian
Higgs multiplet. Since the unit vectorna has a natural mag
netic interpretation~it appears as an order parameter, e.g.
the Heisenberg model! the two sets of variables (Ci ,f) and
na are inherent electric and magnetic dual variables in
two-dimensional gauge theory.

The remaining two field degrees of freedom along
gauge orbit must be orthogonal tona. They can be describe
as follows: We introducegPSU(2) by

nata5gt3g21,

which is manifestly U~1! invariant, i.e., invariant under con
jugation g→gh by an elementhPSU(2) in the Cartan di-
rection t3. This corresponds to the U~1! gauge transforma
tion alongna.

We introduce the right-invariant form

Ri5g21] ig.

With Ri
diag the diagonal part ofRi andRi

o f f its off-diagonal
part, we can write the gauge field~5! as
04501
s

is

e

n

e

e

Ai
ata5g~Cit

31 iRi
diag1r@Ri ,t3#2 isRi

o f f!g211 ig] ig
21.
~13!

Consequently Eq.~5! is manifestly gauge-equivalent to~in
the sequel we always havea,b51,2)

Bi
ata5Cit

31 iRi
diag1r@Ri ,t3#2 isRi

o f f[Wit
31Qi

ata.
~14!

This reveals that the parametrization~5!, ~13! is indeed com-
plete, also on the gauge orbit space.

Clearly, the sine-Gordon decomposition~3! must be con-
tained in Eqs.~13!, ~14!. Comparing Eq.~3! with Eq. ~14! we
conclude that we must chooser,s andna such that

k2sin
v

2
2 ik1cos

v

2
5~r1 is!~k1

u1 ik1
w![fk1

1

k1sin
v

2
2 ik2cos

v

2
5~r1 is!~k2

u1 ik2
w![fk2

1 .

~15!

We parametrize

n̂5S cosw sinu

sinw sinu

cosu
D , ~16!

and we select the phase~12! so that Eq.~11! becomes

k i
15k i

u1 ik i
w5] iu1 i sinu] iw.

We then get from Eq.~15!

S ]1u

sinu]1w
D 5

1

r21s2 F r s

2s r
GS k2sin

v

2

k1cos
v

2

D ,

S ]2u

sinu]2w
D 5

1

r21s2 F r s

2s r
GS k1sin

v

2

k2cos
v

2

D ,

from which we can solveu andw in terms ofv which is a
solution of the sine-Gordon equation, andr ands which we
can select quite liberally.

III. THREE-DIMENSIONAL RIEMANN TENSOR

We now proceed to show that the Yang-Mills fie
strength tensor~6! can be viewed as the Riemannian curv
ture tensor in a three-dimensional ambient space in the
mediate vicinity of a two-dimensional hypersurface. For
suggestive correspondence, we start by interpreting
Yang-Mills field Ai

a as a linear combination of a backgroun
field Wi which is the Cartan component in Eq.~14!, and a
fluctuation fieldQi

a which corresponds to the off-diagona
7-3
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part in Eq. ~14!. The Yang-Mills field strength tensor the
decomposes into the following Cartan part and off-diago
part

Fi j
3 5] iWj2] jWi1~Qi

1Qj
22Qj

2Qi
1![Fi j 1~Qi

1Qj
22Qj

2Qi
1!,

~17!

Fi j
a 5~da

b] i2Wie
a

b!Qj
b2~da

b] j2Wje
a

b!Qi
b ~a,b51,2!.

~18!

It is instructive to compare this with Eq.~6!, which is the
representation of Eqs.~17!, ~18! in the gauget3→nata. The
structural similarity is evident.

Next, we recall Ricci’s identity which states

~¹r¹s2¹s¹r!]hxk5]tx
kRt

hrs ~19!

for a connection¹r and the ensuing curvature tensorRt
hrs .

We employ this in the Gauss equation~4!, by selecting for¹r

the induced covariant derivative on the hypersurface. T
gives for the Riemann curvature tensor of the ambient sp
the decomposition

R̂m
nrs] ix

n] j x
r]kx

s5] lx
mUl

i jk1NmVi jk , ~20!

where

Uli jk 5Rli jk 1~Qi j Qkl2QikQjl !, ~21!

Vi jk5~d i
l]k2G ik

l !Ql j 2~d i
l] j2G i j

l !Qlk ~22!

with Rli jk the Riemann tensor on the two-dimensional s
face andQi j its extrinsic curvature.

Clearly, there is a definite formal similarity between Eq
~17! and ~21!, and between Eqs.~18! and ~22! suggesting
that we can relateFi j

3 ;Uli jk andFi j
a ;Vi jk . If this identifi-

cation indeed holds, the two-dimensional Yang-Mills fie
strength tensor computes the three-dimensional ambient
mann curvature tensor: TheUli jk is the restriction of the
Riemann tensor to the tangent of the surface, andVi jk is the
projection of the Riemann tensor along the unit normal of
surface. Consequently we obtain the entire three-dimensi
Riemann curvature tensor from the two-dimensionalFi j

a , in
the vicinity of the two-dimensional hypersurface. In th
sense the three-dimensional gravity is then induced by
two-dimensional Yang-Mills theory.

We shall now proceed to establish the relations betw
Eqs. ~17!, ~18! and Eqs.~21!, ~22!. For this we denote by
u,v, . . . 51,2 a local frame~tangent bundle! on the two-
dimensional hypersurface in the three-dimensional amb
space. The ensuing zweibein obeyseu

ie
v

jhuv5gi j and
eu

iE
i
v5du

v etc. Furthermore, we introduceeu
v with e1

2
52e2

151. We also introduce the zweibeinea
u with inverse

Eu
a , which relate the local frame of the hypersurface to

off-diagonal part of the SU~2! Lie-algebra.
We start with the decomposition~14!, where we write

Qi
1,2[Qa

i5ea
uQu

i5ea
ueu

jQ
j
i .

We then considerFi j
a . From Eq.~18! we get
04501
l
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Ev
aFi j

a 5] iQ
v

j1~Ev
a] ie

a
u2Wie

v
u!Qu

j2~ i↔ j !

5hvwEk
w] iQk j1~@Ev

a] ie
a

u2Wie
v

u#huwEk
w

1hvw] iE
k
w!Qk j2~ i↔ j !.

Consider

Ev
a] ie

a
u2Wie

v
u .

Hereea
u is a zweibein between two-dimensional flat Eucli

ean spaces, and it can be represented explicitly, e.g., as

e1
u5S cosc

sinc D and e2
u5S 2sinc

cosc D ,

so that

Ev
a] ie

a
u2Wie

v
u52~Wi2] ic!ev

u .

This suggests that we introduce a U~1! gauge transformation
in the Cartan direction of SU~2!, and redefine

Wi2] ic→Wi . ~23!

This gives

eu
khuwEw

aFi j
a 5] iQk j2~El

u] ie
u

k2Wie
l
k!Ql j 2~ i↔ j !.

~24!

We recall the familiar relation between spin connection a
Christoffel symbol,

Gki
l 5v l

ki1El
u] ie

u
k .

Hence, if we identify

v l
ki52Wie

l
k ~25!

we can write Eq.~24! as

eu
khuvEv

aFi j
a 5@] iQk j2G ik

l Ql j #2@] jQki2G jk
l Qli #.

~26!

Thus

Fi j
a 5ea

uhuvEk
vVjik ~27!

and consequently the off-diagonal part of the tw
dimensional Yang-Mills field strength tensor computes
tangential part~21! of the three-dimensional Riemann curv
ture tensor~20!.

We now proceed to inspect the Cartan componentFi j
3 of

the Yang-Mills field strength tensor. When we recall the re
resentation of the Riemann tensor in terms of the spin c
nection, we get

Ru
v i j 5] iv

u
v j2] jv

u
v i1vu

wiv
w

v j2vu
w jv

w
v i

52~] iWj2] jWi !e
u

v ,

where we have used Eq.~25!. But from Eq.~17! we now get
immediately the desired relation
7-4
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Fi j
3 5

1

2
ev

u~Ru
v i j 2Qu

iQv j1Qu
jQv i !5

1

2
ev

uUu
v i j ~28!

and we conclude thatFi j
3 indeed computes the normal com

ponent of the three-dimensional Riemann tensor.
When we combine Eq.~28! with Eq. ~27! we arrive at our

main result: The two-dimensional Yang-Mills field streng
tensor can be interpreted as a three-dimensional Riem
curvature tensor in the vicinity of the two-dimensional h
persurface. In this sense, the two-dimensional Yang-M
theory is then a source of gravity in the three-dimensio
ambient space.

IV. FURTHER DEVELOPMENTS

The present results can be extended in a variety of di
tions. For example, the flatness condition~2! in the two-
dimensional gauge theory can also be interpreted as
equation of motion~first class constraint! in the three-
dimensional SU~2! Chern-Simons theory, when viewed as
Hamiltonian system

S5E d3x TrFA`dA1
2

3
A3G

→E d2xdt~e i j Ai
a] tAj

a2A0
ae i j Fi j

a !. ~29!

Here we have shown that the condition~2! can also be iden-
tified with the Gauss-Codazzi equations, which modulo ri
rotations and translations describe the embedding of t
dimensional Riemann surfaces in flat three-dimensionalR3.
Consequently the Chern-Simons theory determines
Hamiltonian dynamics of two-dimensional Riemann surfa
in flat R3. Since the condition~2! also relates to the Lax pai
of integrable models, the dynamics of these Riemann
faces is integrable, and the surfaces scatter from each o
in an elastic manner which directly relates to the proper
of conventional two-dimensional integrable models@2#. The
SU~2! Chern-Simons theory also describes three-dimensio
knot invariants@6# suggesting interesting connections b
tween knot theory and the dynamics of two-dimensional R
mann surfaces inR3.

Furthermore, since Eq.~2! describes the embedding o
Riemann surfaces in a flat three-dimensional space the e
ing Chern-Simons theory does not employ four-dimensio
gravity. It would be very interesting to develop a generaliz
tion of the Chern-Simons theory, with four-dimension
-
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gravity included. This generalization should lead to E
~20!, ~27!, ~28! as its equations of motion, describing th
dynamics of two-dimensional Riemann surfaces in four
mensional curved ambient space with a curvature induced
the Riemann surfaces, radiating gravity.

Finally, we note that various other relations betwe
gauge fields and gravity have been studied in many o
context. For example the Liouville theory descends from
SL~2,R! gauge theory with appropriate constraints@7#. This
is also related to the AdS3/CFT2 correspondence which p
vides a relation between two-dimensional gauge theories
three-dimensional gravity@8#. Furthermore, the Jackiw
Teitelboim model of two-dimensional gravity can also
written in terms of flat connections@9#. While these and
other similar relations have no straightforward connection
the present work, it would be interesting to see how o
results can be interpreted in these perspectives.

V. CONCLUSIONS

In conclusion, we have shown that the two-dimensio
SU~2! Yang-Mills field strength tensor can be interpreted a
three-dimensional Riemann curvature tensor. This can be
ther interpreted so that the two-dimensional gauge theory
source of three-dimensional gravity. A vanishing Yang-Mi
field strength tensor then leads to a vanishing Riemann
curvature, and consequently it has an interpretation in te
of the original Gauss-Codazzi equations which describe
isometric embedding of Riemann surfaces in flatR3. The
vanishing Yang-Mills field strength tensor also yields
SU~2! Lax pair which implies that two-dimensional inte
grable models with such a Lax pair specify Riemann surfa
in flat R3. Furthermore, since a vanishing two-dimension
field strength tensor also arises as the Hamiltonian equa
of motion in three-dimensional Chern-Simons theory, t
theory admits an interpretation in terms of Hamiltonian d
namics of two-dimensional Riemann surfaces in flat four
mensional ambient space. Obviously it would be interest
to generalize the Chern-Simons theory so that it allows fo
nontrivial four dimensional curvature.
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