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Three-dimensional gravity from SU(2) Yang-Mills theory in two dimensions
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We argue that two-dimensional classical (8JJYang-Mills theory describes the embedding of Riemann
surfaces in three-dimensional curved manifolds. Specifically, the Yang-Mills field strength tensor computes the
Riemannian curvature tensor of the ambient space in a thin neighborhood of the surface. In this sense the two-
dimensional gauge theory then serves as a source of three-dimensional gravity. In particular, if the three-
dimensional manifold is flat it corresponds to the vacuum of the Yang-Mills theory. This implies that all
solutions to the original Gauss-Codazzi surface equations determine two-dimensional integrable models with a
SU(2) Lax pair. Furthermore, the three-dimensional (3UChern-Simons theory describes the Hamiltonian
dynamics of two-dimensional Riemann surfaces in a four-dimensional flat space-time.
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The isometric embedding of a two-dimensional Riemann
surface in a three-dimensional ambient space is a classic 2 12 .
problem in differential geometry1]. The embedding in- Whereki—kz=1 andk; involve the spectral parameter, real
volves the first and second fundamental forms of the surfacd0f @ SU2) connection. Similar relations between the zero
engaging its intrinsic metric and extrinsic curvature. To-Curvature conditior(2) in the two-dimensional S(2) Yang-
gether the two fundamental forms determine the metric oMs'"S theory and the embedding of a Riemann surface in flat
the three dimensional ambient space, in a vanishingly thif® have been established for a number of additional inte-
neighborhood around the two-dimensional surface. If thédrable model$3].
three dimensional space is flaf the two-dimensional met- In the present article we shall argue that for (3Uthe
ric and curvature are subject to the original version of thecondltlon(Z)salways describes the embedding of a Riemann
Gauss-Codazzi equations. But when these equations are iad"face inR®. For this we shall consider a scrupulous de-
valid the three-dimensional curvature is nontrivial, at least if°0mMposition ofA" which reveals that the conditia@) coin-
an immediate vicinity of the surface. In this sense the two-ides with the Gauss-Codazzi surface equations that govern
dimensional surface is then a source of gravity in the threethe isometric embedding of a Riemann surface inRftup
dimensional ambient space. to rigid rotations and translations. Consequently any inte-
In the present article we shall assert that similarly the two-grable model with a S(2) Lax pair always admits an inter-
dimensional 81(2) Yang_Mi”S field can be viewed as an ori- pretation In termS-Of a Riemann SUrface Wthh IS |Sometr|-
gin of three-dimensional Riemannian curvature. Indeedcally embedded in the flat three-dimensional Euclidean
there are suggestions that something like this could occugPace.
For example, it is well known that solutions to the sine- Furthermore, we shall employ our decomposition of the
Gordon equation two-dimensionalA{* to establish that whenever the condition
(2) fails, the Yang-Mills field strength tenséi;; leads to a
Wy — Wyt SiNw=0 (1) non-trivial three-dimensional Riemannian curvature tensor in
a thin neighborhood of the two-dimensional hypersurface.
describe constant negative Gaussian curvature surfaces IS implies that the two-dimensional Yang-Mills theory in-
R3, up to rigid Euclidean motions. But the sine-Gordonduces gravity in three dimensions. The tentative consistency
equation also emerges as the zero curvature condition for tHf this proposal can be verified by comparing the number of
SU(2) Yang-Mills field strength tensof2] (in the sequel field degrees of freedom: The two-dimensional(Zlyauge

i,jk ...=1,2 ande,B,7, ...=1,2,3) field A" has six components, which are s_ubject_ to three
Gauss law constraints. Similarly, the three-dimensional met-
F_D_l:&iA_a_&jA_a_,’_Ea,ByA_ﬂA}/:O 2) ric G, (u,v=1,2,3) has six independent matrix elements,

1] ] | | ]

and these are amenable to diffeomorphisms which involve
three-field degrees of freedom. Thus both two-dimensional
A" and three-dimensiondb,,, carry the same number of

field degrees of freedom, with an equal number of gauge

when we decompose the connectifi according to[2]

o a_ Px 3 L@ g ) degrees of freedom.

ArT= 5 T kesing m—kycosy 7 We shall now proceed to establish the relationship be-
tween the two-dimensional gauge theory and three-
dimensional gravity beyond such a simple counting of field

*Email address: Antti.Niemi@teorfys.uu.se degrees freedom. We show that the two-dimensional Yang-
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Mills field strength tensor actually computes the three-with e, a (flat) dreibein that relates the two-unit vectors;
dimensional Riemannian curvature tensor in the immediatéhese vectors both reside in a fRt, the vectom® is in the

vicinity of the two-dimensional hypersurface. tangent bundle of the gauge group @Uwhile N* is a vec-
tor field in the ambientR®, the normal map of the two-
Il. DECOMPOSITION dimensional hypersurface. These two spaces become identi-

- _ fied by eZ which is obviously an element of $8).

The decomposition of vectors and tensors in terms of their Finally, we shall argue that when we substitute the de-
irreducible components is a common problem in physics. Fogomposition(5) in the Yang-Mills field strength tenseri; it
example, it is widely employed in fluid dynamics where the produces the Riemann curvature tensor of the ambient space,
velocity three vector decomposes into its gradient and vOryhen evaluated in the immediate vicinity of the surface.
ticity components. In cla_ssmal electrodynamics the four di- The decompositior5) was introduced and inspected in
mensional Maxwellian field strength tensér,, becomes [4] in connection of four-dimensional $2) Yang-Mills
similarly dissected into its electric and magnetic compo-theory where it is known to be incompleftg]. But we now
nents. In the context of integrable models, the Lax pair repargue that in two dimensions the decompositiBhis com-

resentation leads to decomposition) of the two-  pete, describing the six independent components of a ge-
dimensional non-abelian gauge field in terms of variables,eric two-dimensional S(@) gauge fieldA®
a

that describe the integrable model. Finally, the isometric em-
bedding of a two-dimensional surfacdin general
d-dimensional hypersurfagavith local coordinates/' in a
three-dimensionalin generald+n dimensional ambient

Indeed, wherD =2 the vector fieldC; has two compo-
nents. Together witlp ando and the two independent com-
ponents of the unit vectan®, both sides of Eq(5) engage
six-field degrees of freedom.

space with local coordinates” and metricG,,, involves In order to confirm that the six field degrees of freedom
the decomposition of the induced metric on the RHS of Eq.(5) are actually independent, we first
- i A substitute the decomposition in the Yang-Mills field strength

ds’=g;;dy'dy' =G,,,aix"d;x"dy'dy’. tensor. This yields

This embedding also entails the decompositiGauss equa- Fo=(G;i—[1—(p?+ ) ]H, )n*+V pa:n®

tion) ij ij P ij ipoj

—I—Via'ea'gy(?jn'gny—Vjpéin“—Vj(ré“'B”é’in'Bny. (6)

ain’u‘f‘f‘M é’ix”ﬂjxpzr!(j(?kx”—FQijN“. (4)

" Here
Here f‘y‘p is the metric connection in the three-dimensional
ambient space],"ikj is the (induced metric connection on the
two-dimensional hypersurface ay; is its extrinsic curva- nd
ture tensor, andN* is the three-dimensional unit normal of
the hypersurface.

Here we inspect how Ed4) relates to the following de-
composition of the two-dimensional $2) Yang-Mills gauge
field A{, introduced originally if4]

i1

Gij :&icj_&jCiHij =e“57naain5&jn7

(0 +iCi)(pt+io)=Vi(pt+io)=Vié.

We then substitute this decomposition lf in the Yang-
Mills action

Af=Cin“+ e*P79,nPn?+ pdin*+ oe*PrgnPnr  (5) 1
S= Zf d?x(F{)2. (7
with p,o scalar fields. Notice that we separate the second

and fourth term on the right-hand sid@HS) and the reason o . ] ]
for this becomes evident as we proceed. When we perform a variation of this action with respect to

We shall argue that in two dimensions E§) is a com- the component fieldsG; , ¢,n%), the ens_uing critical points.
plete decomposition of the full S@) Yang-Mills gauge field lead to a set of Euler-Lagrange equations. These equations

into its irreducible components. reproduce the full two-dimensional Yang-Mills equations
Furthermore, we shall argue that E§) admits a differ- wpep
ential geometric interpretation in terms of the quantities on Di"Fij=0 (8)

the RHS of Eq(4), describing the isometric embedding of a

Riemann surface in a three-dimensional ambient space. Spenly when the decompositiofb) is complete in directions
cifically, the vectoiC; relates to théinduced metric connec- which are orthogonal to the gauge orbits

tion I‘:‘J— on the two-dimensional hypersurface, gm&nd o

relate to the two eigenvalues of itsymmetrig extrinsic cur- AP AT+ DI eP=AT+ (69, + e*"PAN) P, (9)
vature tensoQj; , and the(three componejtunit vectorn®
maps to thethree componeitunit normalN# by The variation of the actiori7) with respect to the compo-
nents C;,¢,n?) gives the following Euler-Lagrange equa-
n*=e®,N* tions[4]
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A-DiF;=0, AfT=g(Cir>+iR{9+ p[R,7°] —ioRY g +igaig
(13
n
«j €. -DiF;;=0, Consequently Eq(5) is manifestly gauge-equivalent {an
- the sequel we always haweb=1,2)
de)e_'DiFij:O. (10) .
e . Br=Ci+iR{"%+ p[R, 7] - i oR =W, 7+ Q' 7%,
Here (g,.€,,n) is a right-handed orthonormal triplet and (14)
k| =kl+ikf=(e,+ie,)-gn=e,-an. (11)  This reveals that the parametrizatit®), (13) is indeed com-
o plete, also on the gauge orbit space.
Note that there is some latitude in the definitioneof=g, Clearly, the sine-Gordon decompositi8) must be con-
+ie,, without affecting any of our subsequent conclusionst@ined in Eqs(13), (14). Comparing Eq(3) with Eq. (14) we
we can send conclude that we must choopgs andn“ such that
A 1 EX w w
e, —e'fe, . (12 kosin —ikycos, = (p+io)(xi+i )= b
Thus we have an internal () gauge structure which has
been discussed ifb]. L@ o) . 0. o N
SinceF {,= —F3; we immediately find that the only non- kysinz —ikacoso=(p+io)(ka+ik3)=¢xy .
trivial regular solution to the equatior{40) is the homoge- (15)

neous one,
We parametrize
Egs. (10=D{*Ff=0
CoS¢p siné
that is, the full two-dimensional Yang-Mills equatiai).
This means that the decompositi®) is indeed complete in
the space of gauge orbits Af". cosé
For a total completeness of the decompositnwe still
need to identify in it the S(2) gauge orbit(9). This gauge and we select the phase?) so that Eq(11) becomes
orbit involves three field degrees of freedom. One of these is
the U1) gauge transformation in the direction of, with
e“=en®. It sends

n=| singsing | (16)

ki =kl+ikf=0,0+isin0s,¢.

We then get from Eq(15)

Ci — Ci - (9i €,
k sin2
¢:p+i0'~>ei€¢, ( 4160 B 1 p O 272
. . o . sinfd,¢)  p2+ 2| — ’
while n® itself remains intact. Notice that as a consequence 19/ pito TP klcosg
(Ci,¢) has a natural interpretation as éalectrig Abelian 2
Higgs multiplet. Since the unit vector* has a natural mag-
netic interpretatiorfit appears as an order parameter, e.g., in klsing
the Heisenberg modethe two sets of variable<J; , ¢) and do0 1 p o 2
n“ are inherent electric and magnetic dual variables in the sinda,e|  p2+g?l—o p ol
two-dimensional gauge theory. kzcos§

The remaining two field degrees of freedom along the
gauge orbit must be orthogonalnd. They can be described from which we can solve and ¢ in terms ofw which is a

as follows: We introducg < SU(2) by solution of the sine-Gordon equation, gménd o which we
n®r*=gr3g !, can select quite liberally.
which is manifestly W1) invariant, i.e., invariant under con- [ll. THREE-DIMENSIONAL RIEMANN TENSOR
jugationg—gh by an elemenh e SU(2) in the Cartan di-
rection 7°. This corresponds to the(l) gauge transforma-
tion alongn®.
We introduce the right-invariant form

We now proceed to show that the Yang-Mills field
strength tenso(6) can be viewed as the Riemannian curva-
ture tensor in a three-dimensional ambient space in the im-
mediate vicinity of a two-dimensional hypersurface. For a

R=g 9. suggestive correspondence, we start by interpreting the
_ Yang-Mills field A{* as a linear combination of a background
With R?'ag the diagonal part oR; and Rio” its off-diagonal  field W; which is the Cartan component in E(.4), and a
part, we can write the gauge fie(d) as fluctuation fieldQ? which corresponds to the off-diagonal
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part in Eq.(lz_l). The Yang-MiIIs field strength tensor then E'aFf = 0,QVj+ (E¥,06%,— Wi’ ) Q! — (i ])
decomposes into the following Cartan part and off-diagonal

part = 7""EXudi Qi+ ([E'adi €% — W, " ] 7"V EX,,
VW 9 =k (i P
Fi =aW;— Wi+ (QQf — Qf Qi) =F;; + (Qi Q] — QfQ}), + 7" GES) Quy— (i ).
17 Consider
F2=(6%0— Wie%) QP — (%9, — W;e%) Q7 (a,b=1,2. EY. 063, — Wie?, .
(18)

Heree?, is a zweibein between two-dimensional flat Euclid-
ean spaces, and it can be represented explicitly, e.g., as

, —sinz,b)
and e”_(cosw ,

It is instructive to compare this with Ed6), which is the

representation of Eq$17), (18) in the gauger’—n®7®. The

structural similarity is evident. cosy
Next, we recall Ricci's identity which states 1u—(

(V,V,=V,V,)d,X= . XR", 19 that

for a connectiorV, and the ensuing curvature tens$or, . . a
e : >npa EY.016%— Wi ey=— (W, — d;1h) €”,, .
We employ this in the Gauss equati@h, by selecting foiV, adi€u = Wie'y=—(Wi=dih) €’y

gives for the Riemann curvature tensor of the ambient spacg the Cartan direction of S(), and redefine
the decomposition

. W= digp—W, . (23
R”VPU&iXVﬁjXP&kXUZ(9|X”U|ijk+N’“Vijk ’ (20)
This gives
where
eukﬂquWaFﬁ:5iij—(Eluaieuk_Wiflk)Qlj —(i=]).
Ujiji = Riiji T (Qij Qui— QikQj1) (21 (24)
Vijk:(5!f9k—rgk)Q|j _(52‘9]_F!j)Qlk (220  We recall the familiar relation between spin connection and

Christoffel symbol,
with Ry the Riemann tensor on the two-dimensional sur- | | .
face andQj; its extrinsic curvature. Ii= o'+ Eydie.
Clearly, there is a definite formal similarity between Egs. . . .
(17) and (21), and between Eqg18) and (22) suggesting tence. if we identify
that we can relat&; ~U i, andF{~ V. If this identifi-
cation indeed holds, the two-dimensional Yang-Mills field
strength tensor computes the three-dimensional ambient Rigze can write Eq(24) as
mann curvature tensor: Thé ;. is the restriction of the
Riemann tensor to the tangent of the surface, \énpdis the e« muE'aFj :[aiij—I‘!kQ”]—[anki—F}kQ“].
projection of the Riemann tensor along the unit normal of the (26)
surface. Consequently we obtain the entire three-dimensional
Riemann curvature tensor from the two-dimensidﬁﬁ\l, in  Thus
the vicinity of the two-dimensional hypersurface. In this
sense the three-dimensional gravity is then induced by the
two-dimensional Yang-Mills theory. .
We shall now proceed to establish the relations betwee nd consequently the off-diagonal part of the two-
Egs. (17), (18) and Egs.(21), (22). For this we denote by |menS|_onaI Yang-Mills field str.ength. tensor computes the
v, ...=12 a local framaftangent bundleon the two- tangential part21) of the three-dimensional Riemann curva-

dimensional hypersurface in the three-dimensional ambientkJre tenson(20).

space. The ensuing zweibein obegse’;n,,=g; and h V\\/(e novl\\sl_gl)lrofc_elt(ajd :O ms:[pr)letct the C\:/srr]tan compoﬁhbf
el.E' =8", etc. Furthermore, we introduce”, with €', € Yang-Milis Tield strength tensor. When we recall the rep-

— — €2,=1. We also introduce the zweibegfl, with inverse resentation of the Riemann tensor in terms of the spin con-

EY,, which relate the local frame of the hypersurface to theneCt'on’ we get

off-diagonal part of the S(2) Lie-algebra.
We start with the decompositiofi4), where we write

1,2__ _ _ i
i =Q%=e%,Q%=¢%,e"Q’;.

o'i=—W;e' (25

Fi=e%n"EX Vi (27)

u — u u u w u w

RYij=diw,j = djo" i+ 0 yjw",j— o\yjo"
— u
——(&in—ajWi)e v

where we have used E®5). But from Eq.(17) we now get
We then consideFﬁ . From Eq.(18) we get immediately the desired relation
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, 1 1 gravity included. This generalization should lead to Egs.
Fii =5 € u(R%ij —Q4Qu + Q% Qu) =5 €"U%;; (28 (20), (27), (28) as its equations of motion, describing the
dynamics of two-dimensional Riemann surfaces in four di-

and we conclude thegi?} indeed computes the normal com- Mensional curved ambient space with a curvature induced by
ponent of the three-dimensional Riemann tensor. the Riemann surfaces, radiating gravity. _

When we combine E¢28) with Eq. (27) we arrive at our Finally, we note that various other relations between
main result: The two-dimensional Yang-Mills field strength 9auge fields and gravity have been studied in many other
tensor can be interpreted as a three-dimensional RiemarfiPntext. For example the Liouville theory descends from an
curvature tensor in the vicinity of the two-dimensional hy- SL(2,R) gauge theory with appropriate constraiff§. This
persurface. In this sense, the two-dimensional Yang-Mills'S also related to the AdS3/CFT2 correspondence which pro-
theory is then a source of gravity in the three-dimensionalides a relation between two-dimensional gauge theories and
ambient space. three-dimensional gravity8]. Furthermore, the Jackiw-
Teitelboim model of two-dimensional gravity can also be
written in terms of flat connectiongd]. While these and
other similar relations have no straightforward connection to

The present results can be extended in a variety of diredhe present work, it would be interesting to see how our
tions. For example, the flatness conditi@®) in the two-  results can be interpreted in these perspectives.
dimensional gauge theory can also be interpreted as the
equation of motion(first class constraintin the three-
dimensional S(2) Chern-Simons theory, when viewed as a

IV. FURTHER DEVELOPMENTS

V. CONCLUSIONS

Hamiltonian system In conclusion, we have shown that the two-dimensional
2 SU(2) Yang-Mills field strength tensor can be interpreted as a

S= f d3x Trl AAdA+ _/_\3} three-dimensional Riemann curvature tensor. This can be fur-

3 ther interpreted so that the two-dimensional gauge theory is a

source of three-dimensional gravity. A vanishing Yang-Mills
_>f d?xdt(e Al g A~ AGETF). (29)  field strength tensor then leads to a vanishing Riemannian
curvature, and consequently it has an interpretation in terms
Here we have shown that the conditié®) can also be iden- of the original Gauss-Codazzi equations which describe the
tified with the Gauss-Codazzi equations, which modulo rigidiSometric embedding of Riemann surfaces in it The
rotations and translations describe the embedding of two¥@nishing Yang-Mills field strength tensor also yields a
dimensional Riemann surfaces in flat three-dimensigtial  SU(2) Lax pair which implies that two-dimensional inte-
Consequently the Chern-Simons theory determines th@rable n;odels with such a Lax pair specify Riemann surfaces
Hamiltonian dynamics of two-dimensional Riemann surfaced? flat R®. Furthermore, since a vanishing two-dimensional
in flat R. Since the conditiorf2) also relates to the Lax pair field st.reng.th tensor glso arises as the Hgm|lton|an equat!on
of integrable models, the dynamics of these Riemann suff motion in three-dimensional Chern-Simons theory, this
faces is integrable, and the surfaces scatter from each oth&}€0ry admits an interpretation in terms of Hamiltonian dy-
in an elastic manner which directly relates to the propertie§@mics of two-dimensional Riemann surfaces in flat four di-
of conventional two-dimensional integrable modidd The mensmnal_ ambient space. Obviously it would t_)e interesting
SU(2) Chern-Simons theory also describes three-dimensiondP 9eneralize the Chern-Simons theory so that it allows for a
knot invariants[6] suggesting interesting connections be-nontrivial four dimensional curvature.
tween knot theory and the dynamics of two-dimensional Rie-
mann surfaces iR>.

Furthermore, since Eq2) describes the embedding of
Riemann surfaces in a flat three-dimensional space the ensu- We thank J.M. Maillet and K. Zarembo for discussions
ing Chern-Simons theory does not employ four-dimensionand L. Faddeev for comments. This work was completed
gravity. It would be very interesting to develop a generaliza-while the author visited Ecole Normale Superieure in Lyon,
tion of the Chern-Simons theory, with four-dimensional and we thank M. Magro for hospitality.
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